Skip to contents

Introduction

This vignette demonstrates how to read and write Seurat objects using the anndataR package, leveraging the interoperability between Seurat and the AnnData format.

Seurat is a widely used toolkit for single-cell analysis in R. anndataR enables conversion between Seurat objects and AnnData objects, allowing you to leverage the strengths of both the scverse and Seurat ecosystems.

Prerequisites

This vignette requires the Seurat package in addition to anndataR. You can install them using the following code:

Reading H5AD files to a Seurat Object

Using an example .h5ad file included in the package, we will demonstrate how to read an .h5ad file and convert it to a Seurat object.

library(anndataR)
library(Seurat)
#> Loading required package: SeuratObject
#> Loading required package: sp
#> 'SeuratObject' was built under R 4.5.0 but the current version is
#> 4.5.1; it is recomended that you reinstall 'SeuratObject' as the ABI
#> for R may have changed
#> 
#> Attaching package: 'SeuratObject'
#> The following objects are masked from 'package:base':
#> 
#>     intersect, t

h5ad_file <- system.file("extdata", "example.h5ad", package = "anndataR")

Read the .h5ad file as a Seurat object:

seurat_obj <- read_h5ad(h5ad_file, as = "Seurat")
seurat_obj
#> An object of class Seurat 
#> 100 features across 50 samples within 1 assay 
#> Active assay: RNA (100 features, 0 variable features)
#>  5 layers present: counts, csc_counts, dense_X, dense_counts, X
#>  2 dimensional reductions calculated: X_pca, X_umap

This is equivalent to reading in the .h5ad file as an AnnData and explicitly converting:

adata <- read_h5ad(h5ad_file)
seurat_obj <- adata$as_Seurat()
seurat_obj
#> An object of class Seurat 
#> 100 features across 50 samples within 1 assay 
#> Active assay: RNA (100 features, 0 variable features)
#>  5 layers present: counts, csc_counts, dense_X, dense_counts, X
#>  2 dimensional reductions calculated: X_pca, X_umap

Mapping between AnnData and Seurat

Figure @ref(fig:mapping) shows the structures of the AnnData and Seurat objects and how anndataR maps between them. It is important to note that matrices in the two objects are transposed relative to each other.

Mapping between `AnnData` and `Seurat` objects

Mapping between AnnData and Seurat objects

By default, all items in most slots are converted using the same names. An exception is the varp slot which doesn’t have a corresponding slot in Seurat. Items in the varm slot are only converted when they are specified in a mapping argument. The Neighbors and Images slots are not mapped when converting from Seurat. See ?as_Seurat for more details on the default mapping.

Customizing the conversion

You can customize the conversion process by providing specific mappings for each slot in the Seurat object.

Each of the mapping arguments can be provided with one of the following:

  • TRUE: all items in the slot will be copied using the default mapping
  • FALSE: the slot will not be copied
  • A (named) character vector: the names are the names of the slot in the Seurat object, the values are the names of the slot in the AnnData object.

See ?as_Seurat for more details on how to customize the conversion process. For instance:

seurat_obj <- adata$as_Seurat(
  layers_mapping = c("counts", "dense_counts"),
  object_metadata_mapping = c(metadata1 = "Int", metadata2 = "Float"),
  assay_metadata_mapping = FALSE,
  reduction_mapping = list(
    pca = c(key = "PC_", embeddings = "X_pca", loadings = "PCs"),
    umap = c(key = "UMAP_", embeddings = "X_umap")
  ),
  graph_mapping = TRUE,
  misc_mapping = c(misc1 = "Bool", misc2 = "IntScalar")
)
seurat_obj
#> An object of class Seurat 
#> 100 features across 50 samples within 1 assay 
#> Active assay: RNA (100 features, 0 variable features)
#>  3 layers present: counts, dense_counts, X
#>  2 dimensional reductions calculated: pca, umap

The mapping arguments can also be passed directly to read_h5ad().

Writing a Seurat object to a H5AD file

The reverse conversion is also possible, allowing you to convert the Seurat object back to an AnnData object, or to just write out the Seurat object as an .h5ad file.

write_h5ad(seurat_obj, tempfile(fileext = ".h5ad"))

This is equivalent to converting the Seurat object to an AnnData object and then writing it out:

adata <- as_AnnData(seurat_obj)
adata$write_h5ad(tempfile(fileext = ".h5ad"))

You can again customize the conversion process by providing specific mappings for each slot in the AnnData object. For more details, see ?as_AnnData.

Here’s an example:

adata <- as_AnnData(
  seurat_obj,
  assay_name = "RNA",
  x_mapping = "counts",
  layers_mapping = c("dense_counts"),
  obs_mapping = c(RNA_count = "nCount_RNA", metadata1 = "metadata1"),
  var_mapping = FALSE,
  obsm_mapping = list(X_pca = "pca", X_umap = "umap"),
  obsp_mapping = TRUE,
  uns_mapping = c("misc1", "misc2")
)
adata
#> InMemoryAnnData object with n_obs × n_vars = 50 × 100
#>     obs: 'RNA_count', 'metadata1'
#>     uns: 'misc1', 'misc2'
#>     obsm: 'X_pca', 'X_umap'
#>     layers: 'dense_counts'
#>     obsp: 'connectivities', 'distances'

The mapping arguments can also be passed directly to write_h5ad().

Session info

sessionInfo()
#> R version 4.5.1 (2025-06-13)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.3 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
#>  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
#>  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
#> [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
#> 
#> time zone: UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] Seurat_5.3.0       SeuratObject_5.2.0 sp_2.2-0           anndataR_0.99.2   
#> [5] BiocStyle_2.36.0  
#> 
#> loaded via a namespace (and not attached):
#>   [1] deldir_2.0-4           pbapply_1.7-4          gridExtra_2.3         
#>   [4] rlang_1.1.6            magrittr_2.0.4         RcppAnnoy_0.0.22      
#>   [7] spatstat.geom_3.6-0    matrixStats_1.5.0      ggridges_0.5.7        
#>  [10] compiler_4.5.1         reshape2_1.4.4         png_0.1-8             
#>  [13] systemfonts_1.3.1      vctrs_0.6.5            stringr_1.5.2         
#>  [16] pkgconfig_2.0.3        fastmap_1.2.0          promises_1.3.3        
#>  [19] rmarkdown_2.30         ragg_1.5.0             purrr_1.1.0           
#>  [22] xfun_0.53              cachem_1.1.0           jsonlite_2.0.0        
#>  [25] goftest_1.2-3          later_1.4.4            rhdf5filters_1.20.0   
#>  [28] Rhdf5lib_1.30.0        spatstat.utils_3.2-0   irlba_2.3.5.1         
#>  [31] parallel_4.5.1         cluster_2.1.8.1        R6_2.6.1              
#>  [34] ica_1.0-3              spatstat.data_3.1-8    stringi_1.8.7         
#>  [37] bslib_0.9.0            RColorBrewer_1.1-3     reticulate_1.43.0     
#>  [40] spatstat.univar_3.1-4  parallelly_1.45.1      scattermore_1.2       
#>  [43] lmtest_0.9-40          jquerylib_0.1.4        Rcpp_1.1.0            
#>  [46] bookdown_0.45          knitr_1.50             tensor_1.5.1          
#>  [49] future.apply_1.20.0    zoo_1.8-14             sctransform_0.4.2     
#>  [52] httpuv_1.6.16          Matrix_1.7-3           splines_4.5.1         
#>  [55] igraph_2.1.4           tidyselect_1.2.1       abind_1.4-8           
#>  [58] yaml_2.3.10            spatstat.random_3.4-2  spatstat.explore_3.5-3
#>  [61] codetools_0.2-20       miniUI_0.1.2           listenv_0.9.1         
#>  [64] plyr_1.8.9             lattice_0.22-7         tibble_3.3.0          
#>  [67] shiny_1.11.1           S7_0.2.0               ROCR_1.0-11           
#>  [70] evaluate_1.0.5         Rtsne_0.17             future_1.67.0         
#>  [73] fastDummies_1.7.5      desc_1.4.3             survival_3.8-3        
#>  [76] polyclip_1.10-7        fitdistrplus_1.2-4     pillar_1.11.1         
#>  [79] BiocManager_1.30.26    KernSmooth_2.23-26     plotly_4.11.0         
#>  [82] generics_0.1.4         RcppHNSW_0.6.0         ggplot2_4.0.0         
#>  [85] scales_1.4.0           globals_0.18.0         xtable_1.8-4          
#>  [88] glue_1.8.0             lazyeval_0.2.2         tools_4.5.1           
#>  [91] data.table_1.17.8      RSpectra_0.16-2        RANN_2.6.2            
#>  [94] fs_1.6.6               dotCall64_1.2          rhdf5_2.52.1          
#>  [97] cowplot_1.2.0          grid_4.5.1             tidyr_1.3.1           
#> [100] nlme_3.1-168           patchwork_1.3.2        cli_3.6.5             
#> [103] spatstat.sparse_3.1-0  textshaping_1.0.4      spam_2.11-1           
#> [106] viridisLite_0.4.2      dplyr_1.1.4            uwot_0.2.3            
#> [109] gtable_0.3.6           sass_0.4.10            digest_0.6.37         
#> [112] progressr_0.16.0       ggrepel_0.9.6          htmlwidgets_1.6.4     
#> [115] farver_2.1.2           htmltools_0.5.8.1      pkgdown_2.1.3         
#> [118] lifecycle_1.0.4        httr_1.4.7             mime_0.13             
#> [121] MASS_7.3-65