This vignette demonstrates how to read and write Seurat
objects using the {anndataR} package, leveraging the
interoperability between Seurat
and the
AnnData
format.
Check out ?anndataR
for a full list of the functions
provided by this package.
Introduction
Seurat is a widely used toolkit for single-cell analysis in R.
{anndataR} enables conversion between
Seurat
objects and AnnData
objects, allowing
you to leverage the strengths of both the scverse and Seurat
ecosystems.
Prerequisites
Before you begin, make sure you have both Seurat and {anndataR} installed. You can install them using the following code:
if (!requireNamespace("pak", quietly = TRUE)) {
install.packages("pak")
}
pak::pak("Seurat")
pak::pak("scverse/anndataR")
Converting an AnnData Object to a Seurat Object
Using an example .h5ad
file included in the package, we
will demonstrate how to read an .h5ad
file and convert it
to a Seurat
object.
library(anndataR)
library(Seurat)
#> Loading required package: SeuratObject
#> Loading required package: sp
#> 'SeuratObject' was built under R 4.5.0 but the current version is
#> 4.5.1; it is recomended that you reinstall 'SeuratObject' as the ABI
#> for R may have changed
#>
#> Attaching package: 'SeuratObject'
#> The following objects are masked from 'package:base':
#>
#> intersect, t
h5ad_file <- system.file("extdata", "example.h5ad", package = "anndataR")
Read the .h5ad
file and convert it to a
Seurat
object:
seurat_obj <- read_h5ad(h5ad_file, as = "Seurat")
seurat_obj
#> An object of class Seurat
#> 100 features across 50 samples within 1 assay
#> Active assay: RNA (100 features, 0 variable features)
#> 5 layers present: counts, csc_counts, dense_X, dense_counts, X
#> 2 dimensional reductions calculated: X_pca, X_umap
This is equivalent to reading in the .h5ad
file and
explicitly converting.
adata <- read_h5ad(h5ad_file)
seurat_obj <- adata$as_Seurat()
seurat_obj
#> An object of class Seurat
#> 100 features across 50 samples within 1 assay
#> Active assay: RNA (100 features, 0 variable features)
#> 5 layers present: counts, csc_counts, dense_X, dense_counts, X
#> 2 dimensional reductions calculated: X_pca, X_umap
Note that there is no one-to-one mapping possible between the AnnData and SeuratObject data structures, so some information might be lost during conversion. It is recommended to carefully inspect the converted object to ensure that all necessary information has been transferred.
Customizing the conversion
You can customize the conversion process by providing specific
mappings for each slot in the Seurat object. Each of the mapping
arguments can be provided with one of the following: -
TRUE
: all items in the slot will be copied using the
default mapping - FALSE
: the slot will not be copied - a
(named) character vector: the names are the names of the slot in the
Seurat object, the values are the names of the slot in the AnnData
object.
See ?as_Seurat
for more details on how to customize the
conversion process. For instance:
seurat_obj <- adata$as_Seurat(
layers_mapping = c("counts", "dense_counts"),
object_metadata_mapping = c(metadata1 = "Int", metadata2 = "Float"),
assay_metadata_mapping = FALSE,
reduction_mapping = list(
pca = c(key = "PC_", embeddings = "X_pca", loadings = "PCs"),
umap = c(key = "UMAP_", embeddings = "X_umap")
),
graph_mapping = TRUE,
misc_mapping = c(misc1 = "Bool", misc2 = "IntScalar")
)
seurat_obj
#> An object of class Seurat
#> 100 features across 50 samples within 1 assay
#> Active assay: RNA (100 features, 0 variable features)
#> 3 layers present: counts, dense_counts, X
#> 2 dimensional reductions calculated: pca, umap
Convert a Seurat Object to an AnnData Object
The reverse conversion is also possible, allowing you to convert the
Seurat
object back to an AnnData
object, or to
just write out the Seurat
object as an .h5ad
file.
write_h5ad(seurat_obj, tempfile(fileext = ".h5ad"))
This is equivalent to converting the Seurat
object to an
AnnData
object and then writing it out:
adata <- as_AnnData(seurat_obj)
write_h5ad(adata, tempfile(fileext = ".h5ad"))
You can again customize the conversion process by providing specific
mappings for each slot in the AnnData
object. For more
details, see ?as_AnnData
.
Here’s an example:
adata <- as_AnnData(
seurat_obj,
assay_name = "RNA",
x_mapping = "counts",
layers_mapping = c("dense_counts"),
obs_mapping = c(RNA_count = "nCount_RNA", metadata1 = "metadata1"),
var_mapping = FALSE,
obsm_mapping = list(X_pca = "pca", X_umap = "umap"),
obsp_mapping = TRUE,
uns_mapping = c("misc1", "misc2")
)
adata
#> AnnData object with n_obs × n_vars = 50 × 100
#> obs: 'RNA_count', 'metadata1'
#> uns: 'misc1', 'misc2'
#> obsm: 'X_pca', 'X_umap'
#> varm: 'pca'
#> layers: 'dense_counts'
#> obsp: 'connectivities', 'distances'
Session info
sessionInfo()
#> R version 4.5.1 (2025-06-13)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.2 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
#> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
#> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C
#> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: UTC
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] Seurat_5.3.0 SeuratObject_5.1.0 sp_2.2-0
#> [4] anndataR_0.1.0.9009 BiocStyle_2.36.0
#>
#> loaded via a namespace (and not attached):
#> [1] deldir_2.0-4 pbapply_1.7-2 gridExtra_2.3
#> [4] rlang_1.1.6 magrittr_2.0.3 RcppAnnoy_0.0.22
#> [7] spatstat.geom_3.4-1 matrixStats_1.5.0 ggridges_0.5.6
#> [10] compiler_4.5.1 png_0.1-8 systemfonts_1.2.3
#> [13] vctrs_0.6.5 reshape2_1.4.4 hdf5r_1.3.12
#> [16] stringr_1.5.1 pkgconfig_2.0.3 fastmap_1.2.0
#> [19] promises_1.3.3 rmarkdown_2.29 ragg_1.4.0
#> [22] bit_4.6.0 purrr_1.1.0 xfun_0.52
#> [25] cachem_1.1.0 jsonlite_2.0.0 goftest_1.2-3
#> [28] later_1.4.2 spatstat.utils_3.1-4 irlba_2.3.5.1
#> [31] parallel_4.5.1 cluster_2.1.8.1 R6_2.6.1
#> [34] ica_1.0-3 spatstat.data_3.1-6 stringi_1.8.7
#> [37] bslib_0.9.0 RColorBrewer_1.1-3 reticulate_1.42.0
#> [40] spatstat.univar_3.1-4 parallelly_1.45.0 lmtest_0.9-40
#> [43] jquerylib_0.1.4 scattermore_1.2 Rcpp_1.1.0
#> [46] bookdown_0.43 knitr_1.50 tensor_1.5.1
#> [49] future.apply_1.20.0 zoo_1.8-14 sctransform_0.4.2
#> [52] httpuv_1.6.16 Matrix_1.7-3 splines_4.5.1
#> [55] igraph_2.1.4 tidyselect_1.2.1 abind_1.4-8
#> [58] yaml_2.3.10 spatstat.random_3.4-1 spatstat.explore_3.4-3
#> [61] codetools_0.2-20 miniUI_0.1.2 listenv_0.9.1
#> [64] plyr_1.8.9 lattice_0.22-7 tibble_3.3.0
#> [67] shiny_1.11.1 ROCR_1.0-11 evaluate_1.0.4
#> [70] Rtsne_0.17 future_1.58.0 fastDummies_1.7.5
#> [73] desc_1.4.3 survival_3.8-3 polyclip_1.10-7
#> [76] fitdistrplus_1.2-4 pillar_1.11.0 BiocManager_1.30.26
#> [79] KernSmooth_2.23-26 plotly_4.11.0 generics_0.1.4
#> [82] RcppHNSW_0.6.0 ggplot2_3.5.2 scales_1.4.0
#> [85] globals_0.18.0 xtable_1.8-4 glue_1.8.0
#> [88] lazyeval_0.2.2 tools_4.5.1 data.table_1.17.8
#> [91] RSpectra_0.16-2 RANN_2.6.2 fs_1.6.6
#> [94] dotCall64_1.2 cowplot_1.2.0 grid_4.5.1
#> [97] tidyr_1.3.1 nlme_3.1-168 patchwork_1.3.1
#> [100] cli_3.6.5 spatstat.sparse_3.1-0 textshaping_1.0.1
#> [103] spam_2.11-1 viridisLite_0.4.2 dplyr_1.1.4
#> [106] uwot_0.2.3 gtable_0.3.6 sass_0.4.10
#> [109] digest_0.6.37 progressr_0.15.1 ggrepel_0.9.6
#> [112] htmlwidgets_1.6.4 farver_2.1.2 htmltools_0.5.8.1
#> [115] pkgdown_2.1.3 lifecycle_1.0.4 httr_1.4.7
#> [118] mime_0.13 bit64_4.6.0-1 MASS_7.3-65